Red blood cell dynamics in biomimetic microfluidic networks of pulmonary alveolar capillaries

نویسندگان

  • Hagit Stauber
  • Dan Waisman
  • Netanel Korin
  • Josué Sznitman
چکیده

The pulmonary capillary networks (PCNs) embody organ-specific microvasculatures, where blood vessels form dense meshes that maximize the surface area available for gas exchange in the lungs. With characteristic capillary lengths and diameters similar to the size of red blood cells (RBCs), seminal descriptions coined the term "sheet flow" nearly half a century ago to differentiate PCNs from the usual notion of Poiseuille flow in long straight tubes. Here, we revisit in true-scale experiments the original "sheet flow" model and devise for the first time biomimetic microfluidic platforms of organ-specific PCN structures perfused with RBC suspensions at near-physiological hematocrit levels. By implementing RBC tracking velocimetry, our measurements reveal a wide range of heterogonous RBC pathways that coexist synchronously within the PCN; a phenomenon that persists across the broad range of pressure drops and capillary segment sizes investigated. Interestingly, in spite of the intrinsic complexity of the PCN structure and the heterogeneity in RBC dynamics observed at the microscale, the macroscale bulk flow rate versus pressure drop relationship retains its linearity, where the hydrodynamic resistance of the PCN is to a first order captured by the characteristic capillary segment size. To the best of our knowledge, our in vitro efforts constitute a first, yet significant, step in exploring systematically the transport dynamics of blood in morphologically inspired capillary networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leukocyte margination in alveolar capillaries: interrelationship with functional capillary geometry and microhemodynamics.

The pulmonary capillary microvasculature harbors a large pool of intravascularly marginated leukocytes. In this study, we investigated the interrelationship of leukocyte margination with characteristics of functional capillary geometry and microhemodynamics in alveolar capillary networks. In 22 anesthetized rabbits we assessed functional capillary density, average capillary length, red blood ce...

متن کامل

Red blood cell orientation in pulmonary capillaries and its effect on gas diffusion.

When alveoli are inflated, the stretched alveolar walls draw their capillaries into oval cross sections. This causes the disk-shaped red blood cells to be oriented near alveolar gas, thereby minimizing diffusion distance. We tested these ideas by measuring red blood cell orientation in histological slides from rapidly frozen rat lungs. High lung inflation did cause the capillaries to have oval ...

متن کامل

Red cell distribution and the recruitment of pulmonary diffusing capacity

Hsia, Connie C. W., Robert L. Johnson, Jr., and Dipen Shah. Red cell distribution and the recruitment of pulmonary diffusing capacity. J. Appl. Physiol. 86(5): 1460–1467, 1999.—The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary ...

متن کامل

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

Invited editorial on "Red cell distribution and the recruitment of pulmonary diffusing capacity".

The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary diffusive gas transport, we computed the uptake of CO across a two-dimensional geometric capillary model containing a variable number of red blood cells. Red blood cells are spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017